DISPOSITIVO DE GIRO DE RODA DIANTEIRA DE CAMINHÕES FORA DE ESTRADA 793F PARA PRÉ-CARGA DE ROLAMENTOS

CSN MINERAÇÃO Márcio Evangelista da Silva marcio.esilva@csn.com.br

RESUMO

Em sua maioria, os processos de manutenção envolvem várias etapas que geram perdas, sejam elas na segurança, qualidade ou produtividade. Em alguns processos da manutenção são consumidos grandes volumes de recursos que poderiam ser otimizados. Um dos principais desafios deste trabalho é reduzir as perdas no processo de pré-carga no rolamento da roda dianteira dos caminhões fora de estrada 793F da Caterpillar. O conceito de perdas no procedimento de execução da atividade inclui principalmente a utilização de empilhadeiras e o número de colaboradores envolvidos. A melhoria a ser implementada consiste na utilização de um dispositivo que faz o giro da roda sem força manual e sem a utilização de equipamentos de apoio, que neste caso é a empilhadeira. Além dos ganhos imensuráveis em relação a segurança dos colaboradores envolvidos na atividade, ganhamos também na qualidade e produtividade, sem contar que o dispositivo criado é passível de solicitação de patente, visto que não existe algo parecido no mercado. Concluímos com o trabalho que quando utilizamos ferramentas de qualidade e controle no auxílio do desenvolvimento de projetos as chances de atender as necessidades são bem maiores. Passar por todas as etapas do PDCA faz com que nos questionemos, e com isso as decisões são mais assertivas e com maiores qualidades técnicas e confiabilidade para os equipamentos.

Palavras chaves: Segurança, Melhoria, Qualidade, Confiabilidade.

ABSTRACT

Most of the maintenance processes involve several steps that generate losses, whether in safety, quality or productivity. In some maintenance processes, large volumes of resources are consumed that could be optimized. One of the main challenges of this work is to reduce losses in the preload process in the front wheel bearing of Caterpillar 793F off-road trucks. The concept of losses in the procedure for carrying out the activity mainly includes the use of forklifts and the number of employees involved. The improvement to be implemented consists in the use of a device that turns the wheel without manual force and without the use of support equipment, which in this case is the forklift. In addition to the immeasurable gains in relation to the safety of employees involved in the activity, we also gained in quality and productivity, not to mention that the device created is subject to patent application, since there is no such thing on the market. We concluded with the work that when we use quality and control tools to assist in the development of projects the chances of meeting the needs are much greater. Going through all the stages of the PDCA makes us question ourselves,

and with that the decisions are more assertive and with greater technical qualities and reliability for the equipment.

Keywords: Safety, Improvement, Quality, Reliability.

INTRODUÇÃO

Com a constante variação do mercado financeiro quando se trata do preço de compra e venda do minério de ferro, soluções simples e de baixos custos têm sido inevitáveis para a sobrevivência das mineradoras. A necessidade de otimização de nossos processos faz com tenhamos ganhos em relação a nossa produtividade e qualidade dos serviços prestados. Atualmente os processos de manutenção de equipamentos de mina têm sido afetados por problemas sistêmicos, dentre eles podemos citar:

- Falta de mão de obra especializada;
- Baixa produtividade;
- Grande número de atividades de alto risco para execução;
- Falta de ferramentas;
- Improvisação na execução das tarefas;

A fim de garantir que nossa empresa seja referência em segurança e qualidade nesses quesitos, várias medidas são tomadas constantemente, e dentre algumas delas podemos citar a criação de vários programas para incentivo de melhorias continua.

CARACTERIZAÇÃO DO PROBLEMA

Existe um problema, no qual possíveis causas são conhecidas e as soluções são desconhecidas. Com o objetivo de encontrar soluções para o problema em questão um grupo multidisciplinar foi criado, abrangendo todos os níveis hierárquicos da empresa. A equipe foi formada pelos seguintes empregados:

- Márcio Evangelista da Silva Engenheiro Líder;
- Rubens Labiapari Coordenador Padrinho;
- Filipe Augusto Assistente Técnico Circulista;
- Cláudio dos Santos Técnico Especialista Circulista;
- Warley Camilo Técnico Especialista Circulista;
- Daniela Aparecida Técnico de Programação Secretária.

PROBLEMA DETECTADO

Atividade de pré-carga em rolamentos nas rodas dianteiras dos caminhões 793D e 793F da Caterpillar com baixa produtividade, excesso de recursos envolvidos e pontos de melhorias em segurança.

Figura 01 – Caminhão 793F e o ponto que se faz necessário a pré-carga.

PROCEDIMENTO DISPONÍVEL PELO FABRICANTE

O procedimento disponibilizado pelo fabricante traz o do passo a passo para realizar a atividade de pré-carga, mas não traz detalhes de como realizar o giro da roda o que nós da a liberdade e dificuldade para realizar o processo.

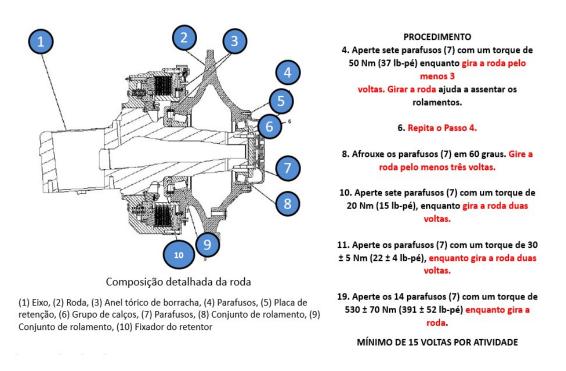


Figura 02 – Procedimento disponibilizado pelo fabricante para execução de pré-carga.

PROCEDIMENTOS EXECUTADOS INTERNAMENTE NA CSN.

Abaixo podemos verificar a evolução no processo de pré-carga e seus ganhos em relação a segurança, qualidade, produtividade e custos.

1° Procedimento: Giro manual da roda.

Figura 03 – Giro da roda através de força manual de dois colaboradores.

Dois colaboradores usavam força física para girar a roda enquanto a terceiro colaborador realizava a pré-carga dos rolamentos.

Pontos Negativos:

- Esforço físico excessivo de colaboradores;
- Tombos e quedas de mesmo nível durante a execução da atividade;
- Descontinuidade na constância de giro, causando baixa qualidade na pré-carga;
- Demora no tempo de execução da atividade devido a pausa dos colaboradores que executam o giro manualmente.

2° Procedimento: Giro manual da roda com utilização de alavanca.

Figura 04 – Giro manual com a força de dois colaboradores com a utilização de uma

Dois colaboradores usavam força física para girar a roda com a ajuda de uma alavanca enquanto a terceiro colaborador realizava a pré-carga dos rolamentos.

Pontos Negativos

X Qualidade

Produtividade

Custos

- Esforço físico excessivo de colaboradores;
- Tombos e quedas de mesmo nível durante a execução da atividade;
- Descontinuidade na constância de giro, causando baixa qualidade na pré-carga;
- Demora no tempo de execução da atividade devido a pausa dos colaboradores que executam o giro manualmente.
- Risco do terceiro colaborador ser atingido com a alavanca

3° Procedimento: Giro da roda com a utilização de uma empilhadeira.

Figura 05 – Giro da roda com a ajuda de uma empilhadeira.

A força física dos dois colaboradores foi substituída pela empilhadeira, que utiliza uma cinta para girar a roda enquanto a terceiro colaborador realizava a pré-carga dos rolamentos.

Pontos Negativos

Segurança

Qualidade

Produtividade

Custos

- Inserida empilhadeira aumentado o risco de atropelamento dos colaboradores envolvidos na atividade;
- Aumento dos custos com a aquisição de empilhadeira;
- Descontinuidade na constância de giro, causando baixa qualidade na pré-carga;
- Aumentamos o número de colaboradores de 3 para 4, pois incluímos o operador de empilhadeira na atividade

ANÁLISE E IDENTIFICAÇÃO DE OPORTUNIDADES DE MELHORIAS

Em visita a campo foi percebido que melhorias eram necessárias para preservação da segurança dos colaboradores que atuam direta e indiretamente neste procedimento. Utilizamos várias ferramentas da qualidade para analisar o problema e definir prioridades.

METODOLOGIAS

BRAINSTORMING

O BRAINSTORMING foi utilizado para caminharmos juntos numa nova direção e solução definitiva para o problema encontrado.

Figura 06 – Estruturação da tempestade de ideias.

Pontos de observação mencionados no BRAINSTORMING tendo como base que suas influências negativas na segurança, qualidade e produtividade ao executar a atividade.

Figura 07 – Definição das perdas no processo a agentes contribuintes para falta de segurança, qualidade e produtividade.

MATRIZ G.U.T (PRIORIZAÇÃO DO BRAINSTORMING)

Pontos de observação mencionados no BRAINSTORMING tendo como base que suas influências negativas na segurança, qualidade e produtividade ao executar a atividade. Utilizamos a MATRIZ GUT para quantificar e qualificar todas as hipóteses geradas pelo brainstorming.

ITEM	PROBLEMA	GRAVIDADE	URGÊNCIA	TENDÊNCIA	GRAU CRÍTICO (GxUxT)	SEQUÊNCIA DE ATIVIDADES
1	Falta da ferramenta adequada para Girar o Cubo	5	5	5	125	1
2	Utilização de Empilhadeira na atividade	5	5	5	125	2
3	Empregado entre o garfo da empilhadeira	5	5	5	125	3
4	Indisponibilidade da empilhadeira em outras atividades	2	2	2	8	12
5	Giro não intercalado do cubo	2	2	2	8	13
6	Uso de cinta para girar o cubo	2	2	2	8	14
7	Falta de sincronismo no giro	5	5	5	125	14
8	Perda de tempo com mudança de posição da cinta	2	Z	2	8	15
9	Baixa qualidade técnica para a atividade	5	5	5	125	5
10	Quatro mãos de obra na atividade	5	5	5	125	6
11	Risco de prensamento de membros devido a erro na comunicação	5	5	5	125	7
12	Reduzir o tempo da atividade	2	3	3	18	8
13	Falta de padronização da atividade	3	2	2	12	10
14	Necessidade de fazer checklist e calçar empilhadeira	3	2	2	12	11
15	Necessidade de espaço físico para empilhadeira	2	4	2	16	9

NOTA	GRAVIDADE	URGÊNCIA	TENDÊNCIA	RESUMO		
1	Sem gravidade	Pode esperar	Não mudar nada	Não é grave nem urgente e não traz prejuízos.		
2	Pouco grave	Pouco urgente	Piorar a longo prazo	Pouco grave, pouco urgente e vai piorar a longo prazo.		
3	Grave	O mais rápido possível	Piorar em médio prazo	Grave, urgente e vai piorar a médio prazo.		
4	Muito grave	É urgente	Piorar em curto prazo	Muito grave, muito urgente e vai piorar a curto		
5	Extremamente Grave	Precisa ser resolvido já	Piorar rapidamente	Extremamente grave e urgente. Se não for resolvido a piora será imediata.		

Figura 08 – Priorização das hipóteses através da matriz G.U.T.

DIAGRAMA DE CAUSA E EFEITO

Realizamos também a análise do problema utilizando a ferramenta da qualidade que ajuda a levantar as causas-raízes de um problema, analisando todos os fatores que envolvem a execução da atividade.



Figura 09 – Diagrama de causa e efeito para determinar os locais das perdas.

5 PORQUÊS

Utilizamos esta metodologia que parte da premissa que após perguntar 5 vezes o porquê um problema está acontecendo, sempre relacionado a causa anterior, será determinada a causa raiz do problema ao invés da fonte de problemas. Todas as respostas convergiram para a necessidade de criação de uma ferramenta que auxiliasse na execução da atividade.

PONTOS DE QUESTIONAMENTOS	1° PORQUÊ	RESPOSTA	2° PORQUÊ	RESPOSTA	3° PORQUÊ	RESPOSTA
Quatro mãos de obra na atividade;	Porque se utiliza 4 pessoas para executar a atividade?	Com o uso da empilhadeira precisa-se de um colaborador a mais para sinalização	Porque se utiliza empilhadeira para executar a atividade?	Porque não possuímos ferramenta adequada para execução da atividade	Porque não possuímos ferramenta para execução desta atividade?	Não existe no mercado ferramenta para execução desta atividade.
Baixa produtividade;	Porque temos baixa produtividade na execução desta atividade?	Porque não temos ferramenta adequação para execução da atividade?	Porque não possuímos ferramenta para execução desta atividade?	Não existe no mercado ferramenta para execução desta atividade.		
Falta de espaço físico para empilhadeira;	Porque temos pouco espaço para execução da atividade com empilhadeira?	Porque a atividade não foi projetada para ser executada com o auxilio de empilhadeiras.	Porque se utiliza empilhadeira para executar a atividade?	Porque não possuímos ferramenta adequada para execução da atividade.	Porque não possuímos ferramenta para execução desta atividade?	Não existe no mercado ferramenta para execução desta atividade.
Layout inadequado para apoio de empilhadeiras;	Porque o layout é inadequado para apoio com empilhadeiras?	Porque a atividade não foi projetada para ser executada com o auxilio de empilhadeiras.	Porque se utiliza empilhadeira para executar a atividade?	Porque não possuímos ferramenta adequada para execução da atividade.	Porque não possuímos ferramenta para execução desta atividade?	Não existe no mercado ferramenta para execução desta atividade.
Utilização de empilhadeira na atividade;	Porque se utiliza empilhadeira para executar a atividade?	Porque não possuímos ferramenta adequada para execução da atividade.	Porque não possuímos ferramenta para execução desta atividade?	Não existe no mercado ferramenta para execução desta atividade.		
Empregado entre o garfo da empilhadeira;	Porque o empregado fica entre o garfo e a empilhadeira?	Porque é nesta posição que o empregado possui a melhor visão para execução da atividade com a utilização da empilhadeira.	Porque se utiliza empilhadeira para executar a atividade?	Porque não possuímos ferramenta adequada para execução da atividade.	Porque não possuímos ferramenta para execução desta atividade?	Não existe no mercado ferramenta para execução desta atividade.
Baixa qualidade técnica para execução da atividade;	Porque a qualidade técnica de execução é baixa neste padrão?	Porque a empilhadeira não é apropriada para a execução da atividade e também não possui precisação para realizar o movimento.	Porque se utiliza empilhadeira para executar a atividade?	Porque não possuímos ferramenta adequada para execução da atividade.	Porque não possuímos ferramenta para execução desta atividade?	Não existe no mercado ferramenta para execução desta atividade.

Figura 10 – Matriz de aplicação dos 5 porquês.

DESENVOLVIMENTO DO PROJETO

Utilizando os resultados obtidos das análises com a ajuda das ferramentas da qualidade foi definido que precisaríamos criar um dispositivo (ferramenta) para auxiliar na execução desta atividade.

Para melhor organização da equipe cada membro ficou responsável por um pilar. Segue abaixo a distribuição:

- Márcio Evangelista: Integração das informações, simulação dos resultados e aplicar metodologias de Engenharia de Qualidade.
- Cláudio dos Santos: Verificar ganhos em relação a produtividade na atividade.
- Daniela Aparecida: Controle de todas as documentações do processo de desenvolvimento
- Filipe Augusto: Verificar ganhos em relação a produtividade na atividade.

Warley Camilo: Verificar ganhos em relação a produtividade na atividade.

CICLO PDCA

Abaixo temos todas as ações distribuídas dentro do PDCA para melhorar a execução, verificação e padronização das etapas do projeto.

	PROJETO - FERRAMENTA PARA GIRO DE CUBO 793F E 793D				
PDCA	ETAPA	FASE	OBJETIVO		
Р	1	Elaboração do Plano de Ação	Prover recursos necessários e planejar todas as atividades a serem executada para construção da ferramenta.		
D	2	Implementação do Plano de Ação	Executar todas as ações para construção da ferramenta.		
	3	Acompanhamento dos Resultados	Checar funcionalidade da ferramenta.		
С	4	Projeto foi satisfatório ?	Verificar se a ferramenta atende as expectativas do projeto (eliminação/ mitigação dos riscos encontrados)		
	5	Padronização	Validar projeto, dispor lista de materiais, padronizar construção, elaborar P.O para utilização.		
A	6	Conclusão	Mostrar ganhos em segurança, qualidade, produtividade e financeiros.		

Figura 11 – Distribuição das etapas de construção do dispositivo dentro do PDCA.

ETAPA P (PLAN)

Nesta etapa fizemos o esboço do projeto do dispositivo e ATAS de reuniões com cronogramas e ações

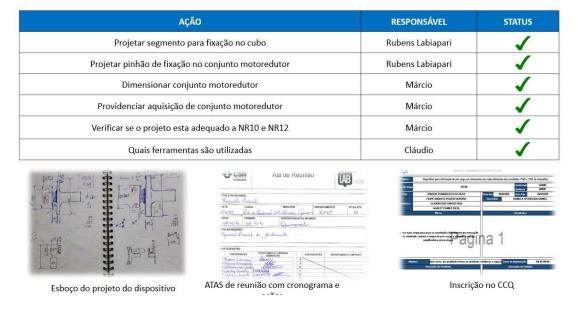


Figura 12 – Na fase de planejamento fizemos o esboço do projeto, atas de reunião e cronograma de execução.

Do esboço passamos para a parte concreta do projeto, considerando todas as medidas e interferências.

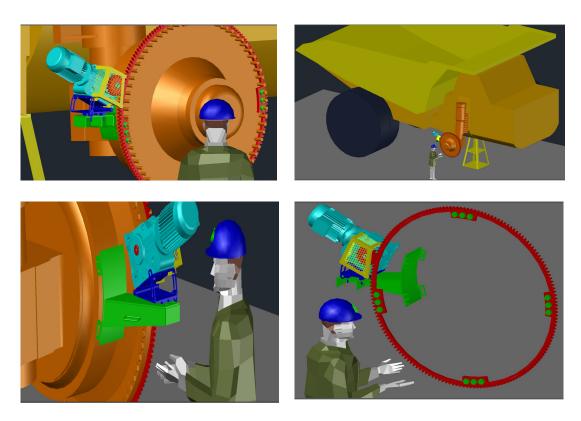


Figura 13 – Esboço do projeto desenhado em 3D para melhor visualização e antecipar as interferências

ETAPA D (DO)

Nesta faze do projeto executamos a construção da coroa, pinhão e base. Montamos também o painel elétrico.

AÇÃC		RESPONSÁVEL	STATUS
Acompanhar fabricaç	ão do segmento	Filipe	1
Conseguir parafusos de	fixação do suporte	Filipe	✓
Validar entrega d	o segmento	Filipe	✓
Acompanhar fabrica	ação do pinhão	Filipe	√
Confeccionar proteç	ão para pinhão	Gilberto	✓
Projetar e confeccionar painel	de acionamento elétrico	Tarcísio	✓
verificar andamento da fabricação do supor	te de fixação do conjunto motoredutor	Filipe	✓
verificar custo de hora ope	rada de empilhadeira	Márcio	✓
Filmar e fotografar como a ativ	vidade é feita atualmente	Cláudio	√
Filmar evolução o	da atividade	Cláudio	1
Fixar e Ajustar	no Local	Cláudio	1
Qual o temp	o gasto	Cláudio	1
Quantos colaboradore	s são necessários	Cláudio	✓
Fabricação Coroa	Montagem Moto redutor	Fabrica	ção Pinhão e base

Figura 14 – Fabricação da coroa, pinhão e montagem do painel elétrico.

ETAPA C (CHECK)

Verificamos todas as interferências existente, do dimensionamento ate o funcionamento do dispositivo.

AÇÃO	RESPONSÁVEL	STATUS
Verificar ajuste do conjunto pinhão/ engrenagem	Filipe	1
Verificar esforço do conjunto motoredutor	Filipe	1
Verificar velocidade do conjunto	Filipe	./
Verificar eliminação/ mitigação dos riscos anteriores	Warley	
Verificar pontos de esmagamento	Warley	./
Verificar esforço físico dos empregados	Warley	1
Verificar existência de pontos cegos para execução da atividade.	Warley	
Avaliar novos riscos gerados	Márcio	,
Verificar tempo gasto na atividade	Cláudio	4
Verificar quantos colaboradores são necessários para execução	Cláudio	1

Verificação da interferência Engrenagem/ Pinhão

Verificação da interferência de montagem da Coroa

Verificação de Montagem da Base

Figura 15 – Acompanhamento do processo de fabricação e teste do dispositivo em campo.

GANHOS

Os resultados foram positivos e superaram nossa expectativa. Vejam só como conseguimos melhorar nosso processo em vários aspectos:

SEGURANÇA

- Eliminação do empregado entre o garfo da empilhadeira;
- Eliminação da falta de espaço físico para empilhadeira;
- Eliminação de layout inadequado para apoio de empilhadeiras;
- Eliminação da improvisação de utilização de empilhadeira na atividade;
- Eliminação risco de prensamento de membros devido a erro na comunicação;
- Eliminação do uso de empilhadeira na atividade.

QUALIDADE TÉCNICA

- Aumento significativo na qualidade de execução da atividade;
- Eliminação da falta de sincronismo no giro do cubo para execução da atividade;
- Redução da dificuldade em contar o número de voltas para melhor qualidade na atividade;

• Eliminação de falta de precisão no controle da empilhadeira;

PRODUTIVIDADE

- Redução de 4 para 2 empregados envolvidos na execução da atividade;
- Ganho de 30 minutos na execução da atividade;
- Ganho anual de 175 horas H/H de técnico de manutenção (aproximadamente 21 dias trabalhados por um técnico de manutenção.)

CUSTOS

 Custo de R\$10.500,00 para confecção do dispositivo. Valor irrisório em relação a custo de mão de obra e equipamento aguardando manutenção.

Figura 16 – Verificação dos resultados.

Veja no comparativo abaixo os ganhos em relação aos outros métodos em executar a atividade:

Figura 17 – Comparativo de todos os métodos executados, sem e com a aplicação do dispositivo.

ETAPA A (ACTION)

Após a confirmação dos resultados positivos passamos para a padronização da utilização do dispositivo, projeto definitivo e lista de materiais para fabricação dele.

ITEN	AÇÃO	RESPONSÁVEL	DATA
31	Solicitar confecção do desenho do projeto	Márcio	1
32	Elaborar lista de materiais e inserir no SAP	Warley	1
33	Elaborar guia de utilização do dispositivo	Cláudio	1
34	Treinar todos os colaboradores na utilização do dispositivo	Filipe	1
35	Realizar gestão de mudança	Márcio	√
36	Inscrever em congressos específicos do Brasil.	Márcio	1
37	Divulgar o projeto para toda a CSN MINERAÇÃO	Rubens	

Dispositivo montado, testado e aprovado

Equipe GP38

Figura 18 – Final de teste e dispositivo aprovado pela equipe de elaboração.

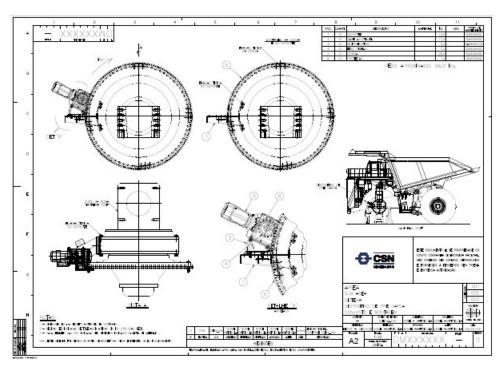


Figura 19 – Projeto executado após confirmação da viabilidade e funcionalidade do dispositivo.

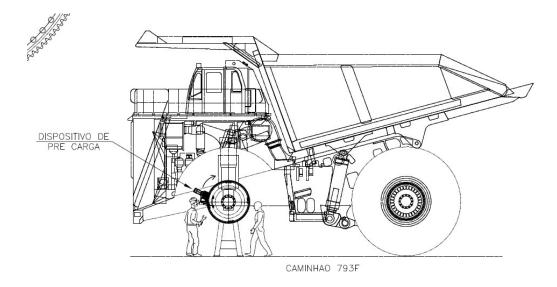


Figura 20 – Representação do dispositivo montado no caminhão 793F.

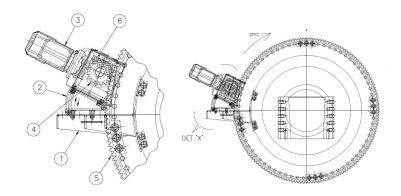


Figura 21 – Desenho representativo do ponto de contato da coroa com o pinhão.

CONCLUSÃO

Concluímos com o trabalho que quando utilizamos ferramentas de qualidade e controle no auxílio do desenvolvimento de projetos as chances de atender as necessidades são bem maiores. Passar por todas as etapas do PDCA faz com que nos questionemos, e com isso as decisões são mais assertivas e com maiores qualidades técnicas.

A junção de uma equipe multidisciplinar na etapa do BRAINSTORMING trouxe enormes ganhos nas ideias e propostas na construção do projeto.

Pelo fato de não existir uma ferramenta no mercado a invenção é passível de solicitação de patente.

REFERÊNCIAS

KARDEC, A.; FLORES, J. F., SEIXAS, E. Gestão Estratégica e Indicadores de Desempenho. Rio de Janeiro: Qualitymark Editora, 2002. (Coleção Manutenção). FALCONI, Vicente C, Cristiane Correa - O que Importa é Resultado. 2017.

COLENGHI, V. M. O & M e qualidade total: uma integração perfeita. Vitor Mature Colenghi – 3. ed. – Uberetama: Ed. V. M. Colenghi; 2007.

DANIELEWICZ, M. Procedimentos para rastreabilidade das não conformidades no processo produtivo. 169 p. Dissertação de Mestrado – Programa de Pós-Graduação em Engenharia de Produção, UFSC, Universidade Federal de Santa Catarina, Florianópolis, 2006.

SHIBA, S; Graham, A. & Walden, D. TQM: quatro revoluções na gestão da qualidade. Artes Médicas. Porto

Alegre: 1997

CANOSSA, S. MASP – Método de Análise e Solução de Problemas, São Paulo: Sercan, 2011.

KARDEC, A.; FLORES, J. F., SEIXAS, E. Gestão Estratégica e Indicadores de Desempenho. Rio de Janeiro: Qualitymark Editora, 2002. (Coleção Manutenção).

KARDEC, Alan Pinto; NASCIF, Júlio Xavier. Manutenção: função estratégica. 3ª. ed. Rio de Janeiro: Qualitymark, 2009.

FALCONI, Vicente C, Cristiane Correa - O que Importa é Resultado. 2017.

AREOSA, João (2003), "Riscos e acidentes de trabalho: inevitável fatalidade ou gestão negligente?", Sociedade e Trabalho, 19/20, 31-44.

AYRES, Dennis de Oliveira, CORRÊA, José Aldo Peixoto, Manual de prevenção de acidentes do trabalho. Porto Alegre, 2011.